Development and Validation of a Virtual Reality Simulator for Robot-Assisted Minimally Invasive Liver Surgery Training.
Alan Kawarai LeforSaúl Alexis Heredia PérezAtsushi ShimizuHung-Ching LinJan WitowskiMamoru MitsuishiPublished in: Journal of clinical medicine (2022)
The value of kinematic data for skill assessment is being investigated. This is the first virtual reality simulator developed for liver surgery. This simulator was coded in C++ using PhysX and FleX with a novel cutting algorithm and used a patient data-derived model and two instruments functioning as ultrasonic shears. The simulator was evaluated by nine expert surgeons and nine surgical novices. Each participant performed a simulated metastasectomy after training. Kinematic data were collected for the instrument position. Each participant completed a survey. The expert participants had a mean age of 47 years and 9/9 were certified in surgery. Novices had a mean age of 30 years and 0/9 were certified surgeons. The mean path length (novice 0.76 ± 0.20 m vs. expert 0.46 ± 0.16 m, p = 0.008), movements (138 ± 45 vs. 84 ± 32, p = 0.043) and time (174 ± 44 s vs. 102 ± 42 s, p = 0.004) were significantly different for the two participant groups. There were no significant differences in activating the instrument (107 ± 25 vs. 109 ± 53). Participants considered the simulator realistic (6.5/7) (face validity), appropriate for education (5/7) (content validity) with an effective interface (6/7), consistent motion (5/7) and realistic soft tissue behavior (5/7). This study showed that the simulator differentiates between experts and novices. Simulation may be an effective way to obtain kinematic data.
Keyphrases