Login / Signup

Complete Chloroplast Genomes of 14 Mangroves: Phylogenetic and Comparative Genomic Analyses.

Chengcheng ShiKai HanLiangwei LiInge SeimSimon Ming-Yuen LeeXun XuHuanming YangGuang-Yi FanXin Liu
Published in: BioMed research international (2020)
Mangroves are a group of plant species that occupy the coastal intertidal zone and are major components of this ecologically important ecosystem. Mangroves belong to about twenty diverse families. Here, we sequenced and assembled chloroplast genomes of 14 mangrove species from eight families spanning five rosid orders and one asterid order: Fabales (Pongamia pinnata), Lamiales (Avicennia marina), Malpighiales (Excoecaria agallocha, Bruguiera sexangula, Kandelia obovata, Rhizophora stylosa, and Ceriops tagal), Malvales (Hibiscus tiliaceus, Heritiera littoralis, and Thespesia populnea), Myrtales (Laguncularia racemosa, Sonneratia ovata, and Pemphis acidula), and Sapindales (Xylocarpus moluccensis). These chloroplast genomes range from 149 kb to 168 kb in length. A conserved structure of two inverted repeats (IRa and IRb, ~25.8 kb), one large single-copy region (LSC, ~89.0 kb), and one short single-copy region (SSC, ~18.9 kb) as well as ~130 genes (85 protein-coding, 37 tRNAs, and 8 rRNAs) was observed. We found the lowest divergence in the IR regions among the four regions. We also identified simple sequence repeats (SSRs), which were found to be variable in numbers. Most chloroplast genes are highly conserved, with only four genes under positive selection or relaxed pressure. Combined with publicly available chloroplast genomes, we carried out phylogenetic analysis and confirmed the previously reported phylogeny within rosids, including the positioning of obscure families in Malpighiales. Our study reports 14 mangrove chloroplast genomes and illustrates their genome features and evolution.
Keyphrases