Login / Signup

Carbocatalysts for Enhancing Permanganate Oxidation of Sulfisoxazole.

Dingxiang WangJun MaJing ZhangTimothy J Strathmann
Published in: Environmental science & technology (2023)
Permanganate (Mn(VII)) is extensively applied in water purification due to its stability and ease of handling, but it is a mild oxidant for trace organic contaminants (TrOCs). Hence, there is significant interest in strategies for enhancing reaction kinetics, especially in combination with efficient and economical carbocatalysts. This study compared the performance of four carbocatalysts (graphite, graphene oxide (GO), reduced-GO (rGO), and nitrogen-doped rGO (N-rGO)) in accelerating sulfisoxazole (SSX) oxidation by Mn(VII) and found that GO exhibited the greatest catalytic performance. Besides, the Mn(VII)/GO system shows desirable capacities to remove a broad spectrum of TrOCs. We proposed that the degradation of SSX in Mn(VII)-GO suspensions follows two routes: (i) direct oxidation of SSX by Mn species [both Mn(VII) and in situ formed MnO 2(s) ] and (ii) a carbocatalyst route, where GO acts as an electron mediator, accepting electrons from SSX and transferring them to Mn(VII). We developed a mathematical model to show the contribution of each parallel pathway and found one-electron transfer is primarily responsible for accelerating SSX removal in the Mn(VII)/GO system. Findings in this study showed that GO provides a simple and effective strategy for enhancing the reactivity of Mn(VII) and provided mechanistic insights into the GO-catalyzed redox reaction between SSX and Mn(VII).
Keyphrases
  • room temperature
  • electron transfer
  • transition metal
  • metal organic framework
  • hydrogen peroxide
  • reduced graphene oxide
  • gold nanoparticles
  • drinking water
  • multidrug resistant
  • heavy metals
  • ionic liquid