Login / Signup

Ir-Doped Pd Nanosheet Assemblies as Bifunctional Electrocatalysts for Advanced Hydrogen Evolution Reaction and Liquid Fuel Electrocatalysis.

Cheng WangHui XuHongyuan ShangLiujun JinChunyan ChenYuan WangMengyu YuanYukou Du
Published in: Inorganic chemistry (2020)
Although great progress in pursuing high-performance catalysts for advanced electrocatalysis has been made, the design of high-efficiency electrocatalysts continues to be a huge challenge for commercializing electrochemical energy technologies. Herein, a three-dimensional (3D) hierarchical assembly nanostructure consisting of ultrathin Ir-doped Pd nanosheets has been well designed, which could serve as a bifunctional electrocatalyst for advanced hydrogen evolution reaction (HER) and liquid fuel electrooxidation. In particular, the optimized Pd83.5Ir16.5 nanocatalyst displays excellent electrocatalytic HER performance with an overpotential of only 73 mV at 10 mA cm-2 along with excellent stability. More importantly, it can also show outstanding electrocatalytic performance for liquid fuel oxidation with a mass activity of 4326.1 mA mgmetal-1 for ethylene glycol oxidation reaction. Mechanistic study reveals that the highly porous 3D nanostructure, the modulation of electronic structure after the introduction of Ir, not only guarantees a high level of exposure of surface active sites and smooth charge transfer but also generates the new active centers for facilitating the adsorption of H2O and recombination of H*, thereby dramatically increasing the intrinsic activity of electrocatalysis.
Keyphrases