An Insight into Photophysical Investigation of (E)-2-Fluoro-N'-(1-(4-Nitrophenyl)Ethylidene)Benzohydrazide through Solvatochromism Approaches and Computational Studies.

Ditto Abraham ThadathilShanu VargheseK B AkshayaRenjith ThomasAnitha Varghese
Published in: Journal of fluorescence (2019)
A fluoro-based Schiff base (E)-2-fluoro-N'-(1-(4-nitrophenyl)ethylidene)benzohydrazide (FNEB) has been synthesized from condensation of 2-fluorobenzohydrazide and 4'-nitroacetophenone catalyzed by glacial acetic acid with ethanol as the solvent. The dipole moment of FNEB in both the electronic states were found using different solvatochromic approaches such as Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, Reichardt and Bilot-Kawski. The experimental ground state dipole moment of FNEB was calculated using Guggenheim-Debye method and theoretical ground state dipole moment using Bilot-Kawski solvatochromic approach. The solvatochromic behavior of the Schiff base in different solvents was studied using absorption and emission spectra. Catalan and Kamlet-Abboud-Taft parameters were used from the multiple linear regression (MLR) analysis in order to study the solute-solvent interaction. The dipole moments were also calculated using Time Dependent-Density Functional Theory (TD-DFT). The chemical stability of FNEB was determined using computational and Cyclic Voltammetry by the use of obtained energy gap between the frontier orbitals. Using the frontier orbitals energy gap, global reactivity parameters were computed. Further, Light Harvesting efficiency was determined to comprehend the photovoltaic property of the Schiff base.