Efficient mineralization of gaseous benzyl chloride by VUV/UV photodegradation in humid air.
Xue SunChaolin LiLiyuan RenWenhui WangPublished in: Environmental science and pollution research international (2021)
VUV/UV photodegradation technology, which is free of catalysts or oxidants, has been regarded as an efficient method to decompose gaseous VOCs. However, the mineralization of gaseous VOCs by VUV/UV photodegradation has seldom been discussed systematically. In this work, the mineralization of benzyl chloride in humid air is comprehensively investigated and the potential contributors in the system (i.e., light wavelength, O2 and H2O) are discussed. As a result, more than 95.0% benzyl chloride is mineralized at 40 min in humid air with 80% relative humidity (RH) despite its initial concentrations (i.e., ranging from 4 to 20 ppm). It is found that both 185-nm VUV light and H2O significant contribute to the efficient mineralization of benzyl chloride in humid air, while O2 only has a limited effect to the efficient mineralization of benzyl chloride in humid air. The introduction of H2O into the VUV/UV photodegradation can reduce the emission of ozone obviously. These findings are significant inspiration to application of the VUV/UV photodegradation technology on the treatment of gaseous VOCs in the actual air atmosphere.