Login / Signup

Accelerating structure reconstruction to form NiOOH in metal-organic frameworks (MOFs) for boosting the oxygen evolution reaction.

Ruiyao HouXiaoxia YangLinghui SuWanglai CenLin YeDengrong Sun
Published in: Nanoscale (2023)
Structural reconstruction of electrocatalysts to generate metal hydroxide/oxyhydroxide species is critical for an efficient oxygen evolution reaction (OER), but the controllable regulation of the reconstruction process still remains a challenge. Given the designable nature of metal-organic frameworks (MOFs), herein, we have reported a localized structure disordering strategy to accelerate the structural reconstruction of Ni-BDC to generate NiOOH for boosting the OER. The Ni-BDC nanosheets were modified by Fe 3+ and urea to form cracks, which could promote the accessibility of the Ni sites by the electrolyte and thus promote the reconstruction to form NiOOH. In addition, the interaction between Ni 2+ and Fe 3+ allows the electron flow from Ni 2+ to Fe 3+ , further enhancing the NiOOH generation. As a result, the optimized sample exhibits excellent OER activity with a small overpotential of 251 mV at 10 mA cm -2 , which is superior to most of the MOF-based OER catalysts reported previously. This work provides a controllable strategy to regulate the structural reconstruction for promoting the OER, which could provide important guidance for the development of more efficient OER electrocatalysts.
Keyphrases
  • metal organic framework
  • highly efficient
  • reduced graphene oxide
  • quantum dots
  • electron microscopy