The mRNA-seq data analysis is a powerful technology for inferring information from biological systems of interest. Specifically, the sequenced RNA fragments are aligned with genomic reference sequences, and we count the number of sequence fragments corresponding to each gene for each condition. A gene is identified as differentially expressed (DE) if the difference in its count numbers between conditions is statistically significant. Several statistical analysis methods have been developed to detect DE genes based on RNA-seq data. However, the existing methods could suffer decreasing power to identify DE genes arising from overdispersion and limited sample size, where overdispersion refers to the empirical phenomenon that the variance of read counts is larger than the mean of read counts. We propose a new differential expression analysis procedure: heterogeneous overdispersion genes testing (DEHOGT) based on heterogeneous overdispersion modeling and a post-hoc inference procedure. DEHOGT integrates sample information from all conditions and provides a more flexible and adaptive overdispersion modeling for the RNA-seq read count. DEHOGT adopts a gene-wise estimation scheme to enhance the detection power of differentially expressed genes when the number of replicates is limited as long as the number of conditions is large. DEHOGT is tested on the synthetic RNA-seq read count data and outperforms two popular existing methods, DESeq2 and EdgeR, in detecting DE genes. We apply the proposed method to a test dataset using RNAseq data from microglial cells. DEHOGT tends to detect more differently expressed genes potentially related to microglial cells under different stress hormones treatments.
Keyphrases
- rna seq
- genome wide identification
- genome wide
- single cell
- data analysis
- genome wide analysis
- bioinformatics analysis
- dna methylation
- electronic health record
- copy number
- transcription factor
- induced apoptosis
- single molecule
- oxidative stress
- big data
- gene expression
- cell cycle arrest
- lps induced
- healthcare
- machine learning
- spinal cord injury
- cell death
- lipopolysaccharide induced
- minimally invasive
- endoplasmic reticulum stress
- quantum dots
- cell proliferation
- label free
- spinal cord
- nucleic acid