Login / Signup

An oscillatory mechanism for multi-level storage in short-term memory.

Kathleen P ChampionOlivia GozelBenjamin S LankowG Bard ErmentroutMark S Goldman
Published in: Communications biology (2023)
Oscillatory activity is commonly observed during the maintenance of information in short-term memory, but its role remains unclear. Non-oscillatory models of short-term memory storage are able to encode stimulus identity through their spatial patterns of activity, but are typically limited to either an all-or-none representation of stimulus amplitude or exhibit a biologically implausible exact-tuning condition. Here we demonstrate a simple mechanism by which oscillatory input enables a circuit to generate persistent or sequential activity that encodes information not only in the spatial pattern of activity, but also in the amplitude of activity. This is accomplished through a phase-locking phenomenon that permits many different amplitudes of persistent activity to be stored without requiring exact tuning of model parameters. Altogether, this work proposes a class of models for the storage of information in working memory, a potential role for brain oscillations, and a dynamical mechanism for maintaining multi-stable neural representations.
Keyphrases
  • working memory
  • high frequency
  • transcranial direct current stimulation
  • healthcare
  • density functional theory
  • white matter
  • health information
  • social media
  • blood brain barrier