Login / Signup

Chemically Triggered Synthesis, Remodeling, and Degradation of Soft Materials.

Xiaolong SunMalgorzata ChwatkoDoo-Hee LeeJames L BachmanJames F ReutherNathaniel A LyndEric V Anslyn
Published in: Journal of the American Chemical Society (2020)
Polymer topology dictates dynamic and mechanical properties of materials. For most polymers, topology is a static characteristic. In this article, we present a strategy to chemically trigger dynamic topology changes in polymers in response to a specific chemical stimulus. Starting with a dimerized PEG and hydrophobic linear materials, a lightly cross-linked polymer, and a cross-linked hydrogel, transformations into an amphiphilic linear polymer, lightly cross-linked and linear random copolymers, a cross-linked polymer, and three different hydrogel matrices were achieved via two controllable cross-linking reactions: reversible conjugate additions and thiol-disulfide exchange. Significantly, all the polymers, before or after topological changes, can be triggered to degrade into thiol- or amine-terminated small molecules. The controllable transformations of polymeric morphologies and their degradation herald a new generation of smart materials.
Keyphrases
  • drug delivery
  • cancer therapy
  • neural network
  • tissue engineering
  • ionic liquid