Login / Signup

Contactless Photoelectrochemical Biosensor Based on the Ultraviolet-Assisted Gas Sensing Interface of Three-Dimensional SnS 2 Nanosheets: From Mechanism Reveal to Practical Application.

Lingting HuangGuoneng CaiRuijin ZengZhichao YuDianping Tang
Published in: Analytical chemistry (2022)
This work reports a contactless photoelectrochemical biosensor based on an ultraviolet-assisted gas sensor (UV-AGS) with a homemade three-dimensional (3D)-SnS 2 nanosheet-functionalized interdigitated electrode. After rigorous examination, it was found that the gas responsiveness accelerated and the sensitivity increased using the UV irradiation strategy. The effects of the interlayer structure and the Schottky heterojunction on the gas-sensitive response of O 2 and NH 3 under UV irradiation were further investigated theoretically by 3D electrostatic field simulations and first-principles density functional theory to reveal the mechanism. Finally, a UV-AGS device was developed to quantify the blood ammonia bioassay in a small-volume whole blood sample by alkalizing blood to release gas-phase ammonia with a linear range of 25-5000 μM with a limit of detection (LOD) of 29.5 μM. The device also enables a rapid immunoassay of human cardiac troponin I (cTnI) with a linear range of 0.4-25.6 ng/mL and an LOD of 0.37 ng/mL using a urease-labeled antibody as the immune recognition molecule. Both analyses showed satisfying specificity and stability, suggesting that the device can be applied to practical assays and is of great potential to increase the value of gas-sensitive sensors in chemical biosensing.
Keyphrases