Login / Signup

A growth selection system for the directed evolution of amine-forming or converting enzymes.

Shuke WuChao XiangYi ZhouMohammad Saiful Hasan KhanWei-Dong LiuChristian G FeilerRen WeiGert WeberMatthias HöhneUwe T Bornscheuer
Published in: Nature communications (2022)
Fast screening of enzyme variants is crucial for tailoring biocatalysts for the asymmetric synthesis of non-natural chiral chemicals, such as amines. However, most existing screening methods either are limited by the throughput or require specialized equipment. Herein, we report a simple, high-throughput, low-equipment dependent, and generally applicable growth selection system for engineering amine-forming or converting enzymes and apply it to improve biocatalysts belonging to three different enzyme classes. This results in (i) an amine transaminase variant with 110-fold increased specific activity for the asymmetric synthesis of the chiral amine intermediate of Linagliptin; (ii) a 270-fold improved monoamine oxidase to prepare the chiral amine intermediate of Cinacalcet by deracemization; and (iii) an ammonia lyase variant with a 26-fold increased activity in the asymmetric synthesis of a non-natural amino acid. Our growth selection system is adaptable to different enzyme classes, varying levels of enzyme activities, and thus a flexible tool for various stages of an engineering campaign.
Keyphrases
  • high throughput
  • amino acid
  • ionic liquid
  • capillary electrophoresis
  • solid state
  • palliative care
  • gene expression
  • copy number
  • single cell
  • mass spectrometry
  • room temperature
  • genome wide