Login / Signup

Photocatalysis Enables Visible-Light Uncaging of Bioactive Molecules in Live Cells.

Haoyan WangWei-Guang LiKaixing ZengYan-Jiao WuYixin ZhangTian-Le XuYiyun Chen
Published in: Angewandte Chemie (International ed. in English) (2018)
The photo-manipulation of bioactive molecules provides unique advantages due to the high temporal and spatial precision of light. The first visible-light uncaging reaction by photocatalytic deboronative hydroxylation in live cells is now demonstrated. Using Fluorescein and Rhodamine derivatives as photocatalysts and ascorbates as reductants, transient hydrogen peroxides were generated from molecular oxygen to uncage phenol, alcohol, and amine functional groups on bioactive molecules in bacteria and mammalian cells, including neurons. This effective visible-light uncaging reaction enabled the light-inducible protein expression, the photo-manipulation of membrane potentials, and the subcellular-specific photo-release of small molecules.
Keyphrases
  • visible light
  • induced apoptosis
  • cell cycle arrest
  • electron transfer
  • cell death
  • gold nanoparticles
  • fluorescent probe
  • brain injury
  • reduced graphene oxide