Single-Nucleotide Polymorphism on Spermatogenesis Associated 16 Gene-Coding Region Affecting Bovine Leukemia Virus Proviral Load.
Hirohisa MekataMari YamamotoPublished in: Veterinary sciences (2022)
Bovine leukemia virus (BLV) is an etiological agent of malignant lymphoma in cattle and is endemic in many cattle-breeding countries. Thus, the development of cattle genetically resistant to BLV is desirable. The purpose of this study was to identify novel single-nucleotide polymorphisms (SNPs) related to resistance to BLV. A total of 146 DNA samples from cattle with high BLV proviral loads (PVLs) and 142 samples from cattle with low PVLs were used for a genome-wide association study (GWAS). For the verification of the GWAS results, an additional 1342 and 456 DNA samples from BLV-infected Japanese Black and Holstein cattle, respectively, were used for an SNP genotyping PCR to compare the genotypes for the identified SNPs and PVLs. An SNP located on the spermatogenesis associated 16 (SPATA16)-coding region on bovine chromosome 1 was found to exceed the moderate threshold ( p < 1.0 × 10 -5 ) in the Additive and Dominant models of the GWAS. The SNP genotyping PCR revealed that the median values of the PVL were 1278 copies/50 ng of genomic DNA for the major homozygous, 843 for the heterozygous, and 621 for the minor homozygous genotypes in the Japanese Black cattle ( p < 0.0001). A similar tendency was also observed in the Holstein cattle. We found that cattle with the minor allele for this SNP showed 20-25% lower PVLs. Although the mechanisms through which this SNP impacts the PVL remain unknown, we found a novel SNP related to BLV resistance located on the SPATA16 gene-coding region on bovine chromosome 1.