Regulatory Mechanism of Peroxisome Number Reduction Caused by FgPex4 and FgPex22-like Deletion in Fusarium graminearum .
Chunjie LiuZhuoyu BiHao XuRenjie ZhangJiayi WangYuancun LiangLi ZhangJinfeng YuPublished in: Journal of fungi (Basel, Switzerland) (2023)
Peroxisomes are single-membrane-bound organelles that play critical roles in eukaryotic cellular functions. Peroxisome quantity is a key factor influencing the homeostasis and pathogenic processes of pathogenic fungi. The aim of the present study was to investigate the underlying mechanisms of the reduction in number of peroxisomes in Fusarium graminearum consequent to FgPex4 and FgPex22-like deletion. The number of peroxisomes decreased by 40.55% and 39.70% when FgPex4 and FgPex22-like , respectively, were absent. Peroxisome biogenesis-related proteins, as well as inheritance- and division-related dynamin-like proteins were reduced at the transcriptional level in the mutant strains. In addition, the degree of pexophagy was intensified and the accumulation of ubiquitinated FgPex5 was also increased in F. graminearum when FgPex4 or FgPex22-like was absent. The findings suggest that FgPex4 and FgPex22-like influence the number of peroxisomes by influencing peroxisome biogenesis and pexophagy.