Login / Signup

Spin-Orbit Splittings and Low-Lying Electronic States of AuSi and AuGe: Anion Photoelectron Spectroscopy and ab Initio Calculations.

Quoc Tri TranSheng-Jie LuLi-Juan ZhaoXi-Ling XuHong-Guang XuVan Tan TranJun LiWei-Jun Zheng
Published in: The journal of physical chemistry. A (2018)
We measured the photoelectron spectra of diatomic AuSi- and AuGe- and conducted calculations on the structures and electronic properties of AuSi-/0 and AuGe-/0. The calculations at the CASSCF/CASPT2 level confirmed that experimentally observed spectra features of AuSi- and AuGe- can be attributed to the transitions from the 3Σ- anionic ground state to the 2Π (2Π1/2 and 2Π3/2), 4Σ-, 32Σ+, and 42Σ+ electronic states of their neutral counterparts. The electron affinities (EAs) of AuSi and AuGe are determined by the experiments to be 1.54 ± 0.05 and 1.51 ± 0.05 eV, respectively. The spin-orbit splittings (2Π1/2-2Π3/2) of AuSi and AuGe measured in this work are in agreement with the literature values. The energy difference between the 4Σ- (A) and 2Π1/2 states of AuSi obtained in this work is in reasonable agreement with the literature value, while that of AuGe obtained in this work by anion photoelectron spectroscopy is slightly larger than the literature value by neutral emission spectroscopy. The term energies of the 32Σ+ (B) and 42Σ+ (C) states of AuSi and AuGe were also determined based on the photoelectron spectra. Because of the different bond lengths between the anionic and neutral states, the electronic state terms energies of AuSi and AuGe estimated from the anion photoelectron spectra might be slightly different from those obtained from the neutral emission spectra.
Keyphrases
  • density functional theory
  • molecular dynamics
  • high resolution
  • systematic review
  • single molecule
  • solid state
  • ionic liquid
  • preterm infants
  • molecular dynamics simulations
  • solar cells