Nanovaccines Fostering Tertiary Lymphoid Structure to Attack Mimicry Nasopharyngeal Carcinoma.
Zhenfu WenHong LiuDongdong QiaoHaolin ChenLiyan LiZeyu YangChenxu ZhuZhipeng ZengYongming ChenLixin LiuPublished in: ACS nano (2023)
Tertiary lymphoid structures (TLSs) are formed in inflamed tissues, and recent studies demonstrated that the appearance of TLSs in tumor sites is associated with a good prognosis for tumor patients. However, the process of natural TLSs' formation was slow and uncontrollable. Herein, we developed a nanovaccine consisting of Epstein-Barr virus nuclear antigen 1 (EBNA1) and a bi-adjuvant of Mn 2+ and cytosine-phosphate-guanine (CpG) formulated with tannic acid that significantly inhibited the development of mimicry nasopharyngeal carcinoma by fostering TLS formation. The nanovaccine activated LT-α and LT-β pathways, subsequently enhancing the expression of downstream chemokines, CCL19/CCL21, CXCL10 and CXCL13, in the tumor microenvironment. In turn, normalized blood and lymph vessels were detected in the tumor tissues of the nanovaccine group, correlated with increased infiltration of lymphocytes. Especially, the proportion of the B220 + CD8 + T, which was produced via trogocytosis between T and B cells during activation of T cells, was increased in tumors of the nanovaccine group. Furthermore, the intratumoral effector memory T cells (Tem), CD45 + , CD3 + , CD8 + , CD44 + , and CD62L - , did not decrease after blocking the egress of T cells from tumor-draining lymph nodes by FTY-720. These results demonstrated that the nanovaccine can foster TLS formation, which thus enhances local immune responses significantly, delays tumor outgrowth, and prolongs the median survival time of murine models of mimicry nasopharyngeal carcinoma, demonstrating a promising strategy for nanovaccine development.
Keyphrases