Login / Signup

Palladium and Lewis-Acid-Catalyzed Intramolecular Aminocyanation of Alkenes: Scope, Mechanism, and Stereoselective Alkene Difunctionalizations.

Zhongda PanShengyang WangJason T BrethorstChristopher J Douglas
Published in: Journal of the American Chemical Society (2018)
An expansion of methodologies aimed at the formation of versatile organonitriles, via the intramolecular aminocyanation of unactivated alkenes, is herein reported. Importantly, the need for a rigid tether in these reactions has been obviated. The ease-of-synthesis and viability of substrates bearing flexible backbones has permitted for diastereoselective variants as well. We demonstrated the utility of this methodology with the formation of pyrrolidones, piperidinones, isoindolinones, and sultams. Furthermore, subsequent transformation of these motifs into medicinally relevant molecules is also demonstrated. A double crossover 13C-labeling experiment is consistent with a fully intramolecular cyclization mechanism. Deuterium labeling experiments support a mechanism involving syn-addition across the alkene.
Keyphrases
  • energy transfer
  • room temperature
  • open label
  • dna methylation
  • reduced graphene oxide
  • genome wide
  • placebo controlled
  • solid state