MultiplexMS: A Mass Spectrometry-Based Multiplexing Strategy for Ultra-High-Throughput Analysis of Complex Mixtures.
Michael J J RecchiaTim U H BaumeisterDennis Y LiuRoger G LiningtonPublished in: Analytical chemistry (2023)
High-throughput chemical analysis of natural product mixtures lags behind developments in genome sequencing technologies and laboratory automation, leading to a disconnect between library-scale chemical and biological profiling that limits new molecule discovery. Here, we report a new orthogonal sample multiplexing strategy that can increase mass spectrometry-based profiling up to 30-fold over traditional methods. Profiled pooled samples undergo subsequent computational deconvolution to reconstruct peak lists for each sample in the set. We validated this approach using in silico experiments and demonstrated a high assignment precision (>97%) for large, pooled samples ( r = 30), particularly for infrequently occurring metabolites of relevance in drug discovery applications. Requiring only 5% of the previously required MS acquisition time, this approach was repeated in a recent biological activity profiling study on 925 natural product extracts, leading to the rediscovery of all previously reported bioactive metabolites. This new method is compatible with MS data from any instrument vendor and is supported by an open-source software package: https://github.com/liningtonlab/MultiplexMS.
Keyphrases
- mass spectrometry
- high throughput
- single cell
- drug discovery
- ms ms
- liquid chromatography
- high resolution
- gas chromatography
- capillary electrophoresis
- high performance liquid chromatography
- ionic liquid
- multiple sclerosis
- small molecule
- electronic health record
- molecular docking
- phase iii
- big data
- data analysis
- gene expression
- artificial intelligence
- deep learning