PhyNEO: A Neural-Network-Enhanced Physics-Driven Force Field Development Workflow for Bulk Organic Molecule and Polymer Simulations.
Junmin ChenKuang YuPublished in: Journal of chemical theory and computation (2023)
An accurate, generalizable, and transferable force field plays a crucial role in the molecular dynamics simulations of organic polymers and biomolecules. Conventional empirical force fields often fail to capture precise intermolecular interactions due to their negligence of important physics, such as polarization, charge penetration, many-body dispersion, etc. Moreover, the parameterization of these force fields relies heavily on top-down fittings, limiting their transferabilities to new systems where the experimental data are often unavailable. To address these challenges, we introduce a general and fully ab initio force field construction strategy, named PhyNEO. It features a hybrid approach that combines both the physics-driven and the data-driven methods and is able to generate a bulk potential with chemical accuracy using only quantum chemistry data of very small clusters. Careful separations of long-/short-range interactions and nonbonding/bonding interactions are the key to the success of PhyNEO. By such a strategy, we mitigate the limitations of pure data-driven methods in long-range interactions, thus largely increasing the data efficiency and the scalability of machine learning models. The new approach is thoroughly tested on poly(ethylene oxide) and polyethylene glycol systems, giving superior accuracies in both microscopic and bulk properties compared to conventional force fields. This work thus offers a promising framework for the development of advanced force fields in a wide range of organic molecular systems.