Login / Signup

Hexavalent Chromium Release in Drinking Water Distribution Systems: New Insights into Zerovalent Chromium in Iron Corrosion Scales.

Cheng TanSumant AvasaralaHaizhou Liu
Published in: Environmental science & technology (2020)
Upon cast iron corrosion in contact with residual disinfectants, drinking water distribution systems have become potential geogenic sources for hexavalent chromium Cr(VI) release. This study investigated mechanisms of Cr(VI) release from cast iron corrosion scales. The oxidation of the corrosion scales by residual disinfectant chlorine released Cr(VI) and exhibited a three-phase kinetics behavior: an initial 2 h fast reaction phase, a subsequent 2-to-12 h transitional phase, and a final 7-day slow reaction phase approximately 2 orders of magnitude slower than the initial phase. X-ray absorption spectroscopy analysis discovered that zerovalent Cr(0) coexisted with trivalent Cr(III) solids in the corrosion scales. Electrochemical corrosion analyses strongly suggested that Cr(0) in the corrosion scales originated from Cr(0) in the cast iron alloy. Cr(0) exhibited a much higher reactivity than Cr(III) in the formation of Cr(VI) by chlorine. The presence of bromide in drinking water significantly accelerated Cr(VI) release because of its catalytic effect. Meanwhile, chlorine consumption was mainly attributed to the oxidation of organic matter and ferrous iron. Findings from this study point to a previously unknown but important pathway of Cr(VI) formation in drinking water, that is, direct oxidation of Cr(0) by chlorine, and suggest new strategies to control Cr(VI) in drinking water by inhibiting Cr(0) reactivity.
Keyphrases
  • drinking water
  • health risk assessment
  • health risk
  • magnetic resonance imaging
  • high resolution
  • nitric oxide
  • signaling pathway
  • mass spectrometry
  • iron deficiency
  • atomic force microscopy
  • label free