Login / Signup

Attosecond-resolved photoionization of chiral molecules.

Samuel BeaulieuA CombyA ClergerieJérémie CaillatDominique DescampsNirit DudovichBaptiste FabreRomain GeneauxF LégaréStéphane PetitB PonsG PoratThierry RuchonR TaïebValérie BlanchetY Mairesse
Published in: Science (New York, N.Y.) (2018)
Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics.
Keyphrases
  • capillary electrophoresis
  • ionic liquid
  • mass spectrometry
  • high speed
  • small molecule
  • high resolution
  • electron transfer
  • solar cells