Exploring the Impact of Molecular Structure on Curing Kinetics: A Comparative Study of Diglycidyl Ether of Bisphenol A and F Epoxy Resins.
Atsuomi ShundoNguyen Thao PhanMika AokiAtsushi TokunagaRiichi KuwaharaSatoru YamamotoDaisuke KawaguchiPublished in: The journal of physical chemistry. B (2024)
Epoxy resins are essential for various applications, and their properties depend on the curing reactions during which epoxy and amine compounds form the network structure. We here focus on how the presence or absence of two methyl groups in common epoxy bases, diglycidyl ether of bisphenol A and F (4,4'-DGEBA and 4,4'-DGEBF), affects the curing kinetics. The chemical reactions of both 4,4'-DGEBA and 4,4'-DGEBF, when cured with the same amine, were monitored by Fourier-transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Despite no difference in the reactivity of epoxy groups between 4,4'-DGEBA and 4,4'-DGEBF, the initial curing reaction was slower for the latter. This delay for the 4,4'-DGEBF system was attributed to intermolecular stacking, which hindered the approach of unreacted epoxy groups to amino groups and vice versa. This conclusion was drawn from the results obtained through ultraviolet (UV) spectroscopy, wide-angle X-ray scattering (WAXS), density functional theory (DFT) calculation, and all-atom molecular dynamics (MD) simulation.