Login / Signup

Hop2-Mnd1 and Swi5-Sfr1 stimulate Dmc1 filament assembly using distinct mechanisms.

Wei LeeHiroshi IwasakiHideo TsubouchiHung-Wen Li
Published in: Nucleic acids research (2023)
In meiosis, Dmc1 recombinase and the general recombinase Rad51 are responsible for pairing homologous chromosomes and exchanging strands. Fission yeast (Schizosaccharomyces pombe) Swi5-Sfr1 and Hop2-Mnd1 stimulate Dmc1-driven recombination, but the stimulation mechanism is unclear. Using single-molecule fluorescence resonance energy transfer (smFRET) and tethered particle motion (TPM) experiments, we showed that Hop2-Mnd1 and Swi5-Sfr1 individually enhance Dmc1 filament assembly on single-stranded DNA (ssDNA) and adding both proteins together allows further stimulation. FRET analysis showed that Hop2-Mnd1 enhances the binding rate of Dmc1 while Swi5-Sfr1 specifically reduces the dissociation rate during the nucleation, about 2-fold. In the presence of Hop2-Mnd1, the nucleation time of Dmc1 filaments shortens, and doubling the ss/double-stranded DNA (ss/dsDNA) junctions of DNA substrates reduces the nucleation times in half. Order of addition experiments confirmed that Hop2-Mnd1 binds on DNA to recruit and stimulate Dmc1 nucleation at the ss/dsDNA junction. Our studies directly support the molecular basis of how Hop2-Mnd1 and Swi5-Sfr1 act on different steps during the Dmc1 filament assembly. DNA binding of these accessory proteins and nucleation preferences of recombinases thus dictate how their regulation can take place.
Keyphrases
  • single molecule
  • energy transfer
  • dna binding
  • living cells
  • atomic force microscopy
  • dna damage
  • dna repair
  • circulating tumor
  • cell free
  • quantum dots
  • high resolution
  • oxidative stress
  • saccharomyces cerevisiae
  • high speed