Login / Signup

Accelerating syngas-to-aromatic conversion via spontaneously monodispersed Fe in ZnCr 2 O 4 spinel.

Guo TianXinyan LiuChenxi ZhangXiaoyu FanHao XiongXiao ChenZhengwen LiBinhang YanLan ZhangNing WangHong-Jie PengFei Wei
Published in: Nature communications (2022)
Spontaneous monodispersion of reducible active species (e.g., Fe, Co) and their stabilization in reductive atmospheres remain a key challenge in catalytic syngas chemistry. In this study, we present a series of catalysts including spontaneously monodispersed and enriched Fe on ZnCr 2 O 4 . Deep investigation shows remarkable performance in the syngas-to-aromatic reaction only when monodispersed Fe coupled with a H-ZSM-5 zeolite. Monodispersed Fe increases the turnover frequency from 0.14 to 0.48 s -1 without sacrificing the record high selectivity of total aromatics (80-90%) at a single pass. The increased activity is ascribed to more efficient activation of CO and H 2 at oxygen vacancy nearest to the isolated Fe site and the prevention of carbide formation. Atomic precise characterization and theoretical calculations shed light on the origin and implications of spontaneous Fe monodispersion, which provide guidance to the design of next-generation catalyst for upgrading small molecules to synthetic fuels and chemicals.
Keyphrases
  • metal organic framework
  • visible light
  • aqueous solution
  • ionic liquid
  • density functional theory
  • gold nanoparticles
  • bone mineral density
  • structural basis