Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution.
Bin TianBining TianBethany SmithM C ScottQin LeiRuinian HuaYue TianYi LiuPublished in: Proceedings of the National Academy of Sciences of the United States of America (2018)
Few-layer black phosphorus (BP) nanosheets were first reported as a 2D material for the application of field-effect transistors in 2014 and have stimulated intense activity among physicists, chemists, and material and biomedical scientists, driving research into novel synthetic techniques to produce BP nanosheets. At present, exfoliation is the main route toward few-layer BP nanosheets via employing bulk BP as raw material. However, this is a complicated and time-consuming process, which is difficult for the large-scale synthesis of BP nanosheets. Moreover, BP degrades rapidly when exfoliated to nanoscale dimensions, resulting in the rapid loss of semiconducting properties. Here, we report the direct wet-chemical synthesis of few-layer BP nanosheets in gram-scale quantities in a bottom-up approach based on common laboratory reagents at low temperature, showing excellent stability due to partial oxidation of surface. Solvent and temperature are two critical factors, controlling not only the formation of BP nanosheets but also the thickness. The as-prepared BP nanosheets can extract hydrogen from pure water (pH = 6.8), exhibiting more than 24-fold higher activity than the well-known C3N4 nanosheets. Our results reporting the ability to prepare few-layer BP nanosheets with a facile, scalable, low-cost approach take us a step closer to real-world applications of phosphorene including next-generation metal-free photocatalysts for photosynthesis.