Login / Signup

Smart Glove Integrated with Tunable MWNTs/PDMS Fibers Made of a One-Step Extrusion Method for Finger Dexterity, Gesture, and Temperature Recognition.

Yingchun LiChunran ZhengShuai LiuLiang HuangTianshu FangJasmine Xinze LiFeng XuFei Li
Published in: ACS applied materials & interfaces (2020)
Flexible wearable devices have proven to be emerging tools for motion monitoring, personal healthcare, and rehabilitation training. The development of a multifunctional, flexible sensor and the integration of sensors and a smart chip for signal reading and transmission play a critical role in building a smart wearable device. In this work, a smart glove based on multiwalled carbon nanotubes/poly(dimethylsiloxane) (MWNTs/PDMS) fibers is developed for gesture and temperature recognition. First, the well-tunable, stretchable, and thermal-sensitive MWNTs/PDMS fibers are fabricated via a facile and cost-effective one-step extrusion method. The obtained fibers exhibit an outstanding linear relationship between resistance change and strain in the range of 0-120% and excellent cyclic stability and durability after 20 000 cycles of 50% tension. They also present a linear relationship of resistance change and temperature of 0.55% °C-1 with a correlation coefficient of 0.998 in the range of 0-100 °C. The fibers, as parts of wearable sensors, are then integrated into a smart glove along with a custom-made data acquisition chip to recognize finger dexterity, gestures, and temperature signals and output them through a screen display, an audio system, and Bluetooth transmission. The highly integrated, low-cost, and multifunctional glove holds great potential for various applications, such as sign language recognition, rehabilitation training, and telemedicine in the Internet-of-Things era.
Keyphrases