Structural and Chemical Evolution of l-Cysteine Nanofilm on Si(111)-√3×√3-Ag: From Preferential Growth at Step Edges and Antiphase Boundaries at Room Temperature to Adsorbate-Mediated Metal Cluster Formation at Elevated Temperature.
Hanieh FarkhondehFatemeh Rahnemaye RahseparLei ZhangKam Tong LeungPublished in: Langmuir : the ACS journal of surfaces and colloids (2019)
The interaction of cysteine molecules with the Si(111)-√3×√3-Ag surface has been investigated over the submonolayer to multilayer regime using X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. With both upper step and lower step terraces, step edges, and antiphase boundaries, the √3×√3-Ag overlayer supported on Si(111) provides a rich two-dimensional template for studying site-specific biomolecular interactions. As an amino acid with three functional groups, cysteine is found to chemisorb through S-H bond cleavage and S-Ag bond linkage first at step edges and antiphase boundaries followed by island formation and expanded growth onto terraces. Intermolecular interactions are dominated by zwitterionic hydrogen bonding at higher coverages, producing a porous unordered interfacial layer composed of cysteine agglomerates at room temperature. Upon annealing, cysteine adsorbates induce structural transformation of the uniform √3×√3-Ag reconstructed surface lattice into metallic Ag clusters with a narrow size distribution and short-range ordering. Preferential nanoaggregate formation of cysteine at defect sites and cysteine-induced metal cluster formation promise a new approach to fabricating nanoclusters for potential applications in chemical sensing and catalysis.
Keyphrases
- room temperature
- fluorescent probe
- density functional theory
- quantum dots
- living cells
- ionic liquid
- highly efficient
- high resolution
- visible light
- single molecule
- amino acid
- molecular dynamics
- sensitive detection
- machine learning
- transcription factor
- high glucose
- gene expression
- human immunodeficiency virus
- oxidative stress
- artificial intelligence
- drug induced
- big data