Login / Signup

ADENet: a novel network-based inference method for prediction of drug adverse events.

Zhuohang YuZengrui WuWeihua LiGuixia LiuYun Tang
Published in: Briefings in bioinformatics (2022)
Identification of adverse drug events (ADEs) is crucial to reduce human health risks and improve drug safety assessment. With an increasing number of biological and medical data, computational methods such as network-based methods were proposed for ADE prediction with high efficiency and low cost. However, previous network-based methods rely on the topological information of known drug-ADE networks, and hence cannot make predictions for novel compounds without any known ADE. In this study, we introduced chemical substructures to bridge the gap between the drug-ADE network and novel compounds, and developed a novel network-based method named ADENet, which can predict potential ADEs for not only drugs within the drug-ADE network, but also novel compounds outside the network. To show the performance of ADENet, we collected drug-ADE associations from a comprehensive database named MetaADEDB and constructed a series of network-based prediction models. These models obtained high area under the receiver operating characteristic curve values ranging from 0.871 to 0.947 in 10-fold cross-validation. The best model further showed high performance in external validation, which outperformed a previous network-based and a recent deep learning-based method. Using several approved drugs as case studies, we found that 32-54% of the predicted ADEs can be validated by the literature, indicating the practical value of ADENet. Moreover, ADENet is freely available at our web server named NetInfer (http://lmmd.ecust.edu.cn/netinfer). In summary, our method would provide a promising tool for ADE prediction and drug safety assessment in drug discovery and development.
Keyphrases
  • adverse drug
  • deep learning
  • drug induced
  • healthcare
  • emergency department
  • systematic review
  • high efficiency
  • low cost
  • network analysis
  • wastewater treatment
  • single cell
  • health information
  • data analysis