Login / Signup

Binding Site Programmable Self-Assembly of 3D Hierarchical DNA Origami Nanostructures.

Xingfei WeiChi ChenAlexander V PopovMark BatheRigoberto Hernandez
Published in: The journal of physical chemistry. A (2024)
DNA nanotechnology has broad applications in biomedical drug delivery and programmable materials. Characterization of the self-assembly of DNA origami and quantum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchical nanostructures can be controlled by programming the binding site number and their positions on DNA origami. Using biotinylated pentagonal pyramid wireframe DNA origamis and streptavidin capped QDs, we demonstrate that DNA origami with 1 binding site at the outer vertex can assemble multimeric origamis with up to 6 DNA origamis on 1 QD, and DNA origami with 1 binding site at the inner center can only assemble monomeric and dimeric origamis. Meanwhile, the yield percentages of different multimeric origamis are controlled by the QD:DNA-origami stoichiometric mixing ratio. DNA origamis with 2 binding sites at the αγ positions (of the pentagon) make larger nanostructures than those with binding sites at the αβ positions. In general, increasing the number of binding sites leads to increases in the nanostructure size. At high DNA origami concentration, the QD number in each cluster becomes the limiting factor for the growth of nanostructures. We find that reducing the QD size can also affect the self-assembly because of the reduced access to the binding sites from more densely packed origamis.
Keyphrases
  • circulating tumor
  • cell free
  • single molecule
  • drug delivery
  • nucleic acid
  • quantum dots
  • circulating tumor cells