Green Synthesis of Silver Nanoparticle Using Black Mulberry and Characterization, Phytochemical, and Bioactivity.
Yoo-Na JeonSu-Ji RyuHa-Yeon LeeJang-Oh KimJong-Suep BaekPublished in: Antibiotics (Basel, Switzerland) (2024)
Synthesis of silver nanoparticles (AgNPs) using plant extracts has been proposed as a more advantageous and environmentally friendly alternative compared to existing physical/chemical methods. In this study, AgNPs were synthesized from silver nitrate using black mulberry (BM) extract. The biosynthesized AgNPs were characterized through an UV-visible spectrometer, X-ray diffraction, and transmission electron microscopy. Additionally, BM-AgNPs were subjected to antioxidant, antibacterial, anti-inflammatory, and anticancer activities. AgNPs biosynthesized from BM extract were dark brown in color and showed a strong peak at 437 nm, confirming that AgNPs were successfully synthesized. The size of AgNPs was 170.17 ± 12.65 nm, the polydispersity index was 0.281 ± 0.07, and the zeta potential value was -56.6 ± 0.56 mV, indicating that the particles were stable. The higher total phenol, flavonoid, and anthocyanin content of BM-AgNPs compared to BM extract indicates that the particles contain multiple active substances due to the formation of AgNPs. The DPPH and ABTS assays showed decreased IC 50 values compared to BM extract, demonstrating improved antioxidant activity. AgNPs inhibited the growth of S. aureus and E. coli at 600 μg/mL, with minimum bactericidal concentrations determined to be 1000 and 1200 μg/mL, respectively. The anti-inflammatory activity was 64.28% at a BM-AgNPs concentration of 250 μg/mL. As the concentration increased, the difference from the standard decreased, indicating the inhibitory effect of AgNPs on bovine serum albumin denaturation. The viability of MCF-7 cells treated with BM-AgNPs was found to be significantly lower than that of cells treated with BM extract. The IC 50 value of BM-AgNPs was determined to be 96.9 μg/mL. This study showed that BM-AgNPs have the potential to be used in the pharmaceutical industry as antioxidant, antibacterial, anti-inflammatory, and anticancer agents.
Keyphrases
- silver nanoparticles
- anti inflammatory
- oxidative stress
- induced apoptosis
- escherichia coli
- physical activity
- magnetic resonance imaging
- risk assessment
- computed tomography
- photodynamic therapy
- cell death
- gold nanoparticles
- cell cycle arrest
- climate change
- high throughput
- human health
- single cell
- signaling pathway
- newly diagnosed