Construction of Metal-Organic Framework-Based Heterogeneous Pepsin and Its Degradation Performance and Mechanism for Phthalic Acid Esters.
Sheng Nan HuHanzhu KongYuting SunRonghui WuJing XuMing GuoPublished in: ACS applied materials & interfaces (2024)
Biological enzyme-driven degradation of environmental pollutants has attracted widespread attention because it is ecofriendly and highly efficient. Immobilized enzyme technology has emerged as a promising technique in enzymology that addresses the limitations associated with free enzymes. Traditional solid-loaded enzyme substrates are often affected by blockages and restricted substrate accessibility. In this study, we synthesized an efficient heterogeneous pepsin catalyst, named PEP@M-MIL100(Fe), by covalently combining carboxylated ferrite structural expanded metal-organic frameworks with pepsin. This catalyst demonstrated excellent environmental adaptability and remarkable catalytic degradation capabilities. Notably, it rapidly degraded the persistent microplastic pollutant diisononyl phthalate (DINP) within just 150 min, with a removal efficiency of up to 95.88%. Impressively, even after 10 consecutive uses, the catalyst maintained its high performance. We proposed an innovative steady-state heterogeneous enzyme-catalyzed degradation mechanism, i.e., diffusion (D)-absorption (A)-binding (B)-reaction (R)-degradation (D)-link mechanism, which emphasizes the influence of substrate diffusion rates in this process. This work presents the first successful application of pepsin to DINP degradation and offers a sustainable and effective approach for addressing contemporary pollution challenges.
Keyphrases
- metal organic framework
- highly efficient
- room temperature
- heavy metals
- drug delivery
- ionic liquid
- risk assessment
- gold nanoparticles
- working memory
- mass spectrometry
- particulate matter
- reduced graphene oxide
- tandem mass spectrometry
- carbon dioxide
- structural basis
- simultaneous determination
- health risk assessment
- capillary electrophoresis