Integrative genetic map of repetitive DNA in the sole Solea senegalensis genome shows a Rex transposon located in a proto-sex chromosome.
Emilio GarcíaIsmael CrossSilvia Portela-BensMaría E RodríguezAglaya García-AnguloBelén MolinaAngeles CuadradoThomas LiehrLaureana RebordinosPublished in: Scientific reports (2019)
Repetitive sequences play an essential role in the structural and functional evolution of the genome, particularly in the sexual chromosomes. The Senegalese sole (Solea senegalensis) is a valuable flatfish in aquaculture albeit few studies have addressed the mapping and characterization of repetitive DNA families. Here we analyzed the Simple Sequence Repeats (SSRs) and Transposable elements (TEs) content from fifty-seven BAC clones (spanning 7.9 Mb) of this species, located in chromosomes by multiple fluorescence in situ hybridization (m-BAC-FISH) technique. The SSR analysis revealed an average density of 675.1 loci per Mb and a high abundance (59.69%) of dinucleotide coverage was observed, being 'AC' the most abundant. An SSR-FISH analysis using eleven probes was also carried out and seven of the 11 probes yielded positive signals. 'AC' probes were present as large clusters in almost all chromosomes, supporting the bioinformatic analysis. Regarding TEs, DNA transposons (Class II) were the most abundant. In Class I, LINE elements were the most abundant and the hAT family was the most represented in Class II. Rex/Babar subfamily, observed in two BAC clones mapping to chromosome pair 1, showed the longest match. This chromosome pair has been recently reported as a putative sexual proto-chromosome in this species, highlighting the possible role of the Rex element in the evolution of this chromosome. In the Rex1 phylogenetic tree, the Senegalese sole Rex1 retrotransposon could be associated with one of the four major ancient lineages in fish genomes, in which it is included O. latipes.
Keyphrases