Login / Signup

Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini).

Marcial Quiroga-CarmonaGuillermo D'Elia
Published in: Scientific reports (2022)
Even when environmental variation over time and space is commonly considered as an important driver of population divergence, few evaluations of intraspecific genetic variation explicitly assess whether observed structure has been caused by or is correlated with landscape heterogeneity. Several phylogeographic studies have characterized the mitochondrial diversity of Abrothrix olivacea, but none has incorporated landscape genetics analyses and ecological niche modeling, leaving a gap in the understanding of the species evolutionary history. Here, these aspects were addressed based on 186 single nucleotide polymorphisms, extracted from sequences of 801 bp of Cytb gene, gathered from 416 individuals collected at 103 localities in Argentina and Chile. Employing multivariate statistical analyses (gPCA, Mantel and Partial Mantel Tests, Procrustes Analysis, and RDA), associations between genetic differences and geographic and climatic distances were evaluated. Presence data was employed to estimate the potential geographic distribution of this species during historical and contemporary climatic scenarios, and to address differences among the climatic niches of their main mitochondrial lineages. The significant influence of landscape features in structuring mitochondrial variability was evidenced at different spatial scales, as well as the role of past climatic dynamics in driving geographic range shifts, mostly associated to Quaternary glaciations. Overall, these results suggest that throughout geographic range gene flow is unevenly influenced by climatic dissimilarity and the geographic distancing, and that studied lineages do not exhibit distributional signals of climatic niche conservatism. Additionally, genetic differentiation occurred by more complex evolutionary processes than mere disruption of gene flow or drift.
Keyphrases
  • genome wide
  • copy number
  • climate change
  • dna methylation
  • oxidative stress
  • single cell
  • human health
  • gene expression
  • electronic health record
  • artificial intelligence
  • case control