The Influence of Solvent, Host, and Phenological Stage on the Yield, Chemical Composition, and Antidiabetic and Antioxidant Properties of Phragmanthera capitata (Sprengel) S. Balle.
Césaire FeudjioMuhammad Arfat YameenGuy Sedar Singor NjatengMuhammad Ahsan KhanStephen Lacmata TamekouJames D Simo MpetgaJules-Roger KuiatéPublished in: Evidence-based complementary and alternative medicine : eCAM (2020)
Phragmanthera capitata was reported to possess many biological properties making it a good candidate for the formulation of a phytomedicine with multiple effects. In this work, we studied some factors likely to modify these therapeutic properties with the aim to contribute to its standardization as an improved traditional medicine. P. capitata parasitizing Persea americana, Psidium guajava, and Podocarpus mannii were harvested at three phenological stages (vegetative, flowering, and fruiting stages). The extracts were prepared by maceration in n-hexane, ethyl acetate, ethanol, methanol, and distilled water. The total phenolic, flavonoid, flavonol, and tannin contents were measured using appropriate methods. The antioxidant potential of extracts was investigated using TAC, DPPH scavenging, and FRAP methods. The α-amylase and α-glucosidase inhibitory activities of extracts were determined using enzymatic methods. The ethyl acetate extracts with the best phenolic content were subjected to HPLC analysis. The extraction yields were higher with methanol. The ethyl acetate extract of P. capitata harvested from P. guajava showed a stable HPLC profile during the development of the plant, while extracts from the plant collected from P. americana and P. mannii showed both qualitative and quantitative variations according to phonological stages of the plant. The inhibition of α-amylase was more pronounced for P. capitata harvested from P. guajava, decreasing during flowering and fruiting, while inhibition of α-glucosidase was not influenced by the phenological stage and the host of the plant. The α-amylase inhibitors were better extracted by ethyl acetate and those of α-glucosidase by ethanol or methanol. The phenolic contents and antioxidant properties of the extracts were influenced by the phenological stage of P. capitata and its hosts. These results suggest that it is preferable to harvest P. capitata during flowering or during fruiting stages on any host. None of the used solvents permitted an optimal extraction of active principles form P. capitata, suggesting that the mixture of solvents must be considered in further studies.