Honeycomb ZrCo Intermetallic for High Performance Hydrogen and Hydrogen Isotope Storage.
Yingbo YuanXiaofang LiuWukui TangZhenyang LiGang HuangHaihan ZouRonghai YuJianglan ShuiPublished in: ACS applied materials & interfaces (2023)
Hydrogen isotope storage materials are of great significance for controlled nuclear fusion, which is promising to provide unlimited clean and dense energy. Conventional storage materials of micrometer-sized polycrystalline ZrCo alloys prepared by the smelting method suffer from slow kinetics, pulverization, disproportionation, and poor cycling stability. Here, we synthesize a honeycomb-structured ZrCo composed of highly crystalline submicrometer ZrCo units using electrospray deposition and magnesiothermic reduction. Compared with conventional ones, honeycomb ZrCo does not require activation and exhibits more than 1 order of magnitude increase in kinetic property. Owing to low defects and low stress, the anti-disproportionation ability and cycling stability of honeycomb ZrCo are also obviously higher than those of conventional ZrCo. Moreover, the interfacial stress (due to hydrogenation/dehydrogenation) as a function of particle radius is established, quantitatively elucidating that small-sized ZrCo reduces stress and pulverization. This study points out a direction for the structural design of ZrCo alloy with high-performance hydrogen isotope storage.