Login / Signup

Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms.

Chiara Leal-AlvesZhiyang DengNatalia KermeciSteve C C Shih
Published in: Lab on a chip (2024)
Synthetic biology is the design and modification of biological systems for specific functions, integrating several disciplines like engineering, genetics, and computer science. The field of synthetic biology is to understand biological processes within host organisms through the manipulation and regulation of their genetic pathways and the addition of biocontrol circuits to enhance their production capabilities. This pursuit serves to address global challenges spanning diverse domains that are difficult to tackle through conventional routes of production. Despite its impact, achieving precise, dynamic, and high-throughput manipulation of biological processes is still challenging. Microfluidics offers a solution to those challenges, enabling controlled fluid handling at the microscale, offering lower reagent consumption, faster analysis of biochemical reactions, automation, and high throughput screening. In this review, we diverge from conventional focus on automating the synthetic biology design-build-test-learn cycle, and instead, focus on microfluidic platforms and their role in advancing synthetic biology through its integration with host organisms - bacterial cells, yeast, fungi, animal cells - and cell-free systems. The review illustrates how microfluidic devices have been instrumental in understanding biological systems by showcasing microfluidics as an essential tool to create synthetic genetic circuits, pathways, and organisms within controlled environments. In conclusion, we show how microfluidics expedite synthetic biology applications across diverse domains including but not limited to personalized medicine, bioenergy, and agriculture.
Keyphrases
  • high throughput
  • induced apoptosis
  • cell free
  • single cell
  • gram negative
  • cell cycle arrest
  • deep learning
  • oxidative stress
  • signaling pathway
  • dna methylation
  • pi k akt