Login / Signup

What effect might border screening have on preventing importation of COVID-19 compared with other infections?: considering the additional effect of post-arrival isolation.

Declan BaysEmma BennettThomas Finnie
Published in: Epidemiology and infection (2022)
We recently described a simple model through which we assessed what effect subjecting travellers to a single on-arrival test might have on reducing risk of importing disease cases during simulated outbreaks of coronavirus disease 2019 (COVID-19), influenza, severe acute respiratory syndrome (SARS) and Ebola. We build upon this work to allow for the additional requirement that inbound travellers also undergo a period of self-isolation upon arrival, where upon completion the traveller is again tested for signs of infection prior to admission across the border. Prior results indicated that a single on-arrival test has the potential to detect 9% of travellers infected with COVID-19, compared to 35%, 10% and 3% for travellers infected with influenza, SARS and Ebola, respectively. Our extended model shows that testing administered after a 2-day isolation period could detect up to 41%, 97%, 44% and 15% of COVID-19, influenza, SARS and Ebola infected travellers, respectively. Longer self-isolation periods increase detection rates further, with an 8-day self-isolation period suggesting detection rates of up to 94%, 100%, 98% and 62% for travellers infected with COVID-19, influenza, SARS and Ebola, respectively. These results therefore suggest that testing arrivals after an enforced period of self-isolation may present a reasonable method of protecting against case importation during international outbreaks.
Keyphrases
  • coronavirus disease
  • sars cov
  • respiratory syndrome coronavirus
  • emergency department
  • infectious diseases
  • case report
  • climate change
  • risk assessment
  • real time pcr