Login / Signup

Numerical and Experimental Study of Gas Phase Nanoparticle Synthesis Using NanoDOME.

Giorgio La CivitaEdoardo UgoliniNicola PatelliAlberto PiccioniAndrea MiglioriLuca PasquiniEmanuele Ghedini
Published in: Nanomaterials (Basel, Switzerland) (2023)
Nowadays, with the rocketing of computational power, advanced numerical tools, and parallel computing, multi-scale simulations are becoming applied more and more to complex multi-physics industrial processes. One of the several challenging processes to be numerically modelled is gas phase nanoparticle synthesis. In an applied industrial scenario, the possibility to correctly estimate the geometric properties of the mesoscopic entities population (e.g., their size distribution) and to more precisely control the results is a crucial step to improve the quality and efficiency of the production. The "NanoDOME" project (2015-2018) aims to be an efficient and functional computational service to be applied in such processes. NanoDOME has also been refactored and upscaled during the H2020 Project "SimDOME". To prove its reliability, we present here an integrated study between experimental data and NanoDOME's predictions. The main goal is to finely investigate the effect of a reactor's thermodynamic conditions on the thermophysical history of mesoscopic entities along the computational domain. To achieve this goal, the production of silver nanoparticles has been assessed for five cases with different experimental operative conditions of the reactor. The time evolution and final size distribution of nanoparticles have been simulated with NanoDOME by exploiting the method of moments and population balance model. The validation is performed by comparing NanoDOME's calculations with the experimental data.
Keyphrases