Login / Signup

Physiological and biochemical characteristics of milk thistle ( Silybum marianum (L.) Gaertn) as affected by some plant growth regulators.

Sahar FanaiDavood BakhshiBohloul Abbaszadeh
Published in: Food science & nutrition (2024)
Milk thistle ( Silybum marianum (L.) Gaertn) is a globally and widely used medicinal plant that contains silymarin. This plant has antioxidant, antimicrobial, anticancer, hepatoprotective, cardiovascular-protective, and neuroprotective effects. Plant quality, yield, and phytochemicals, especially silymarin content, change under various conditions like drought stress. Therefore, this research studied plant growth regulators (PGRs) like salicylic acid, spermidine, and brassinosteroid to increase plant tolerance to drought stress. Experimental treatments include different levels of irrigation (25%, 50%, 75%, and 90% field capacity), and foliar spraying including salicylic acid (75 and 150 mg/L), spermine (70 and 140 mg/L), and brassinosteroid (1 and 1.2 μM), separately, and water as a control and a secondary factor. The results revealed that the highest amount of leaf phenolic compounds was observed in the highest drought stress level (25%) and 75 mg/L salicylic acid application. Furthermore, brassinosteroid at different concentrations and salicylic acid (75 mg/L) increased leaf flavonoid content compared to other treatments. In 50% field capacity, foliar application of salicylic acid (150 mg/L) significantly increased seed yield by approximately 75% compared to control under the same stress level. Brassinosteroid application (1 μM) under 75% field capacity significantly increased the seed's taxifolin amount by 159%. Additionally, salicylic acid noticeably increased the silychristin concentration. The concentration of silydianin in the seed has also been increased under drought stress and foliar spraying with PGRs. Compared to the control, using spermidine below 75% field capacity caused an increase in its concentrations by over seven times. The highest silybin A amount was obtained in 50% field capacity and foliar150 mg/L salicylic acid. Taxifolin, silychristin, silydianin, silybinin B, iso-silybinin A, and iso-silybinin B compounds were identified in the seed extract. Generally, foliar spraying using plant growth regulators increased the number of silymarin compounds under drought stress conditions and field cultivation conditions.
Keyphrases
  • plant growth
  • oxidative stress
  • staphylococcus aureus
  • single cell
  • stress induced