Login / Signup

An investigation of the neural association between auditory imagery and perception of complex sounds.

Jin GuHairuo ZhangBaolin LiuXianglin LiPeiyuan WangBin Wang
Published in: Brain structure & function (2019)
Neuroimaging studies have demonstrated that mental imagery and perception share similar neural substrates, however, there are still ambiguities according to different auditory imagery content. In addition, there is still a lack of information regarding the underlying neural correlation between the two modalities. In the present study, we adopted functional magnetic resonance imaging to explore the neural representation during imagery and perception of actual sounds in our surroundings. Univariate analysis was used to assess the differences between the modalities of average activation intensity, and stronger imagery activation was found in sensorimotor regions but weaker activation in auditory association cortices. Additionally, multi-voxel pattern analysis with a support vector machine classifier was implemented to decode environmental sounds within- or cross-modality. Significant above-chance accuracies were found in all overlapping regions in the classification of within-modality, while successful cross-modality classification only was found in sensorimotor regions. Both univariate and multivariate analyses found distinct representation between auditory imagery and perception in the overlapping regions, including superior temporal gyrus and inferior frontal sulcus as well as the precentral cortex and pre-supplementary motor area. Our results confirm the overlapping activation regions between auditory imagery and perception reported by previous studies and suggest that activation regions showed dissociable representation pattern in imagery and perception of sound categories.
Keyphrases
  • working memory
  • magnetic resonance imaging
  • deep learning
  • functional connectivity
  • hearing loss
  • machine learning
  • mental health
  • healthcare
  • computed tomography
  • high intensity