Login / Signup

Synthesis of Novel Pyrido[1,2-c]pyrimidine Derivatives with 6-Fluoro-3-(4-piperidynyl)-1,2-benzisoxazole Moiety as Potential SSRI and 5-HT1A Receptor Ligands.

Marek KrólGrzegorz ŚlifirskiJerzy KlepsSzymon UlenbergMariusz BelkaTomasz BączekAgata SiwekKatarzyna StachowiczBernadeta SzewczykGabriel NowakBeata DuszyńskaFranciszek Herold
Published in: International journal of molecular sciences (2021)
Two series of novel 4-aryl-2H-pyrido[1,2-c]pyrimidine (6a-i) and 4-aryl-5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine (7a-i) derivatives were synthesized. The chemical structures of the new compounds were confirmed by 1H and 13C NMR spectroscopy and ESI-HRMS spectrometry. The affinities of all compounds for the 5-HT1A receptor and serotonin transporter protein (SERT) were determined by in vitro radioligand binding assays. The test compounds demonstrated very high binding affinities for the 5-HT1A receptor of all derivatives in the series (6a-i and 7a-i) and generally low binding affinities for the SERT protein, with the exception of compounds 6a and 7g. Extended affinity tests for the receptors D2, 5-HT2A, 5-HT6 and 5-HT7 were conducted with regard to selected compounds (6a, 7g, 6d and 7i). All four compounds demonstrated very high affinities for the D2 and 5-HT2A receptors. Compounds 6a and 7g also had high affinities for 5-HT7, while 6d and 7i held moderate affinities for this receptor. Compounds 6a and 7g were also tested in vivo to identify their functional activity profiles with regard to the 5-HT1A receptor, with 6a demonstrating the activity profile of a presynaptic agonist. Metabolic stability tests were also conducted for 6a and 6d.
Keyphrases
  • binding protein
  • risk assessment
  • transcription factor
  • mass spectrometry
  • dna binding
  • climate change
  • structure activity relationship