Login / Signup

Self-Assembled Nanostructures Regulate H2S Release from Constitutionally Isomeric Peptides.

Yin WangKuljeet KaurSamantha J ScannelliRonit BittonJohn B Matson
Published in: Journal of the American Chemical Society (2018)
We report here on three constitutionally isomeric peptides, each of which contains two glutamic acid residues and two lysine residues functionalized with S-aroylthiooximes (SATOs), termed peptide-H2S donor conjugates (PHDCs). SATOs decompose in the presence of cysteine to generate hydrogen sulfide (H2S), a biological signaling gas with therapeutic potential. The PHDCs self-assemble in aqueous solution into different morphologies, two into nanoribbons of different dimensions and one into a rigid nanocoil. The rate of H2S release from the PHDCs depends on the morphology, with the nanocoil-forming PHDC exhibiting a complex release profile driven by morphological changes promoted by SATO decomposition. The nanocoil-forming PHDC mitigated the cardiotoxicity of doxorubicin more effectively than its nanoribbon-forming constitutional isomers as well as common H2S donors. This strategy opens up new avenues to develop H2S-releasing biomaterials and highlights the interplay between structure and function from the molecular level to the nanoscale.
Keyphrases
  • aqueous solution
  • amino acid
  • cancer therapy
  • drug delivery
  • room temperature
  • atomic force microscopy
  • single molecule
  • living cells
  • kidney transplantation
  • molecularly imprinted