DFT Quantum-Chemical Modeling Molecular Structures of Cobalt Macrocyclic Complexes with Porphyrazine or Its Benzo-Derivatives and Two Oxygen Acido Ligands.
Oleg V MikhailovDenis V ChachkovPublished in: International journal of molecular sciences (2020)
Based on the results of a quantum chemical calculation using the DFT method with the OPBE/TZVP and B3PW91/TZVP levels, the possibility of the existence of three cobalt heteroligand complexes containing in the inner coordination sphere porphyrazine, di[benzo]- and tetra[benzo]porphyrazine, and two oxygen (O2-) ions with probable oxidation state VI of Co, which is unknown for this element at the present time, was shown. Data on the structural parameters are presented. It was shown that CoN4 chelate nodes as well as all metal-chelate and non-chelate cycles in each of these complexes, were strictly planar. Besides, the bond angles formed by two donor nitrogen atoms and a Co atom were close or equal to 90°, while the bond angles formed by donor atoms N, Co, and O, in most cases, albeit insignificantly, differed from this value. Good agreement between the calculated data obtained using the above two versions of the DFT method was found. Standard thermodynamic parameters of formation (standard enthalpy ΔH0f, 298, entropy S0f, 298 and Gibbs's energy ΔG0f, 298) for the indicated complexes were presented too.
Keyphrases
- molecular dynamics
- density functional theory
- molecular docking
- electronic health record
- reduced graphene oxide
- escherichia coli
- electron transfer
- machine learning
- crystal structure
- radiation therapy
- pseudomonas aeruginosa
- early stage
- mass spectrometry
- sentinel lymph node
- cystic fibrosis
- energy transfer
- carbon nanotubes
- lymph node
- aqueous solution