Login / Signup

Few-femtosecond electronic and structural rearrangements of CH 4 + driven by the Jahn-Teller effect.

Kristina S ZinchenkoFernando Ardana-LamasValentina Utrio LanfaloniNicholas MonahanIssaka SeiduMichael S SchuurmanSimon P NevilleHans Jakob Wörner
Published in: Structural dynamics (Melville, N.Y.) (2023)
The Jahn-Teller effect (JTE) is central to the understanding of the physical and chemical properties of a broad variety of molecules and materials. Whereas the manifestations of the JTE in stationary properties of matter are relatively well studied, the study of JTE-induced dynamics is still in its infancy, largely owing to its ultrafast and non-adiabatic nature. For example, the time scales reported for the distortion of CH 4 + from the initial T d geometry to a nominal C 2 v relaxed structure range from 1.85 fs over 10 ± 2 fs to 20 ± 7 fs. Here, by combining element-specific attosecond transient-absorption spectroscopy and quantum-dynamics simulations, we show that the initial electronic relaxation occurs within 5 fs and that the subsequent nuclear dynamics are dominated by the Q 2 scissoring and Q 1 symmetric stretching modes, which dephase in 41 ± 10 fs and 13 ± 3 fs, respectively. Significant structural relaxation is found to take place only along the e-symmetry Q 2 mode. These results demonstrate that CH 4 + created by ionization of CH 4 is best thought of as a highly fluxional species that possesses a long-time-averaged vibrational distribution centered around a D 2 d structure. The methods demonstrated in our work provide guidelines for the understanding of Jahn-Teller driven non-adiabatic dynamics in other more complex systems.
Keyphrases