Login / Signup

From a Cerium-Doped Polynuclear Bismuth Oxido Cluster to β-Bi2O3:Ce.

Marcus WeberTobias RüfferFlorian SpeckFabian GöhlerDominik P WeimannChristoph A SchalleyThomas SeyllerHeinrich LangMichael Mehring
Published in: Inorganic chemistry (2020)
The simultaneous hydrolysis of Bi(NO3)3·5H2O and Ce(NO3)3·6H2O results in the formation of novel heterometallic bismuth oxido clusters with the general formula [Bi38O45(NO3)24(DMSO)28+δ]:Ce (DMSO = dimethyl sulfoxide; cerium content <1.50%), which is demonstrated by single-crystal X-ray diffraction analysis. The incorporation of cerium into the cluster core is a result of the interplay of hydrolysis and condensation of the metal nitrates in the presence of oxygen. Diffuse-reflectance UV-vis and X-ray photoelectron spectroscopy reveal the presence of CeIV in the final bismuth oxido clusters as a result of oxidation of the cerium source. The cerium atoms are statistically distributed mainly on the bismuth atom positions of the central [Bi6O9] motif of the [Bi38O45] cluster core. Hydrolysis and subsequent annealing of the bismuth oxido clusters in the temperature range of 300-400 °C provides β-Bi2O3:Ce samples with slightly lowered band gaps of approximately 2.3 eV compared to the undoped β-Bi2O3 (approximately 2.4 eV). The sintering behavior of β-Bi2O3 is significantly affected by the cerium dopant. Finally, differences in the efficiency of the as-prepared β-Bi2O3:Ce and undoped β-Bi2O3 samples in the photocatalytic decomposition of the biocide triclosan in an aqueous solution under visible-light irradiation are demonstrated.
Keyphrases
  • visible light
  • oxide nanoparticles
  • high resolution
  • gene expression
  • nitric oxide
  • quantum dots
  • single cell
  • preterm birth
  • reduced graphene oxide