Login / Signup

Machine-Learning-Based Carbon Dioxide Concentration Prediction for Hybrid Vehicles.

David Tena-GagoGelayol GolcarenarenjiIgnacio Martinez-AlpisteQi WangJose Maria Alcaraz-Calero
Published in: Sensors (Basel, Switzerland) (2023)
The current understanding of CO 2 emission concentrations in hybrid vehicles (HVs) is limited, due to the complexity of the constant changes in their power-train sources. This study aims to address this problem by examining the accuracy, speed and size of traditional and advanced machine learning (ML) models for predicting CO 2 emissions in HVs. A new long short-term memory (LSTM)-based model called UWS-LSTM has been developed to overcome the deficiencies of existing models. The dataset collected includes more than 20 parameters, and an extensive input feature optimization has been conducted to determine the most effective parameters. The results indicate that the UWS-LSTM model outperforms traditional ML and artificial neural network (ANN)-based models by achieving 97.5% accuracy. Furthermore, to demonstrate the efficiency of the proposed model, the CO 2 -concentration predictor has been implemented in a low-powered IoT device embedded in a commercial HV, resulting in rapid predictions with an average latency of 21.64 ms per prediction. The proposed algorithm is fast, accurate and computationally efficient, and it is anticipated that it will make a significant contribution to the field of smart vehicle applications.
Keyphrases
  • neural network
  • machine learning
  • carbon dioxide
  • deep learning
  • artificial intelligence
  • multiple sclerosis
  • big data
  • working memory
  • high speed