Login / Signup

Control of Pre-formed Halogenated Disinfection Byproducts with Reuse Biofiltration.

Eric S PetersonR Scott SummersSherri M Cook
Published in: Environmental science & technology (2023)
Disinfection byproduct (DBP) pre-formation is a major issue when prechlorination is used before or during advanced treatment of impacted drinking water sources. Control strategies for pre-formed DBPs before final disinfection, especially for currently nonregulated although highly toxic DBP species, are not yet established. This study evaluated the biodegradation potential of pre-formed DBPs, including haloacetonitriles (HANs), haloacetamides (HAMs), and haloacetaldehydes (HALs), during biofiltration with sand, anthracite, and biological activated carbon of three wastewater effluents under potable reuse conditions. Up to 90%+ removal of di- and trihalogenated HANs, HAMs, and HALs was observed, and removal was associated with active heterotrophic biomass and removal of biodegradable organic carbon. Unlike the microbial dehalogenation pathway of haloacetic acids (HAAs), removal of HANs and HAMs appeared to result from a biologically mediated hydrolysis pathway (i.e., HANs to HAMs and HAAs) that may be prone to inhibition. After prechlorination, biofiltration effectively controlled pre-formed DBP concentrations (e.g., from 271 μg/L to as low as 22 μg/L in total) and DBP-associated calculated toxicity (e.g., 96%+ reduction). Abiotic residual adsorption capacity in biological activated carbon media was important for controlling trihalomethanes. Overall, the toxicity-driving DBP species exhibited high biodegradation potential and biofiltration showed significant promise as a pre-formed DBP control technology.
Keyphrases