Login / Signup

Total Syntheses of Calyciphylline A-Type Alkaloids (-)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and (+)-Calyciphylline R via Late-Stage Divinyl Carbinol Rearrangements.

Yan ZhangYuye ChenManrong SongBin TanYujia JiangChongyuan YanYuyang JiangXinyue HuChengqian ZhangWenqing ChenJing Xu
Published in: Journal of the American Chemical Society (2022)
Among the famous Daphniphyllum alkaloids family, the calyciphylline A-type subfamily has triggered particular interest from the organic synthesis community in recent years. Here, we report divergent total syntheses of three calyciphylline A-type alkaloids, namely, (-)-10-deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent strategy via late-stage divinyl carbinol rearrangements, including an unprecedented oxidative Nazarov electrocyclization using an unfunctionalized tertiary divinyl carbinol and an unusual allylic alcohol rearrangement. A highly efficient "donor-acceptor" platinum catalyst was used for a critical nitrile hydration step. Moreover, the power of selective amide reductions has also been showcased by novel and classic tactics.
Keyphrases
  • highly efficient
  • healthcare
  • mental health
  • reduced graphene oxide
  • energy transfer