Login / Signup

In Situ Raman Observation of Oxygen Activation and Reaction at Platinum-Ceria Interfaces during CO Oxidation.

Di-Ye WeiMu-Fei YueSi-Na QinSa ZhangYuan-Fei WuGe-Yang XuHua ZhangZhong-Qun TianJian-Feng Li
Published in: Journal of the American Chemical Society (2021)
Understanding the fundamental insights of oxygen activation and reaction at metal-oxide interfaces is of significant importance yet remains a major challenge due to the difficulty in in situ characterization of active oxygen species. Herein, the activation and reaction of molecular oxygen during CO oxidation at platinum-ceria interfaces has been in situ explored using surface-enhanced Raman spectroscopy (SERS) via a borrowing strategy, and different active oxygen species and their evolution during CO oxidation at platinum-ceria interfaces have been directly observed. In situ Raman spectroscopic evidence with isotopic exchange experiments demonstrate that oxygen is efficiently dissociated to chemisorbed O on Pt and lattice Ce-O species simultaneously at interfacial Ce3+ defect sites under CO oxidation, leading to a much higher activity at platinum-ceria interfaces compared to that at Pt alone. Further in situ time-resolved SERS studies and density functional theory simulations reveal a more efficient molecular pathway through the reaction between adsorbed CO and chemisorbed Pt-O species transferred from the interfaces. This work deepens the fundamental understandings on oxygen activation and CO oxidation at metal-oxide interfaces and offers a sensitive technique for the in situ characterization of oxygen species under working conditions.
Keyphrases